Ana Sayfa

Ana Sayfa

letişim

İletişim

KPSS Dershanesi Logo Anasayfa

KPSS Genel Kültür

KPSS Genel Yetenek

KPSS Eğitim Bilimleri

KPSS Haberleri

KPSS Eğitim Videoları

KPSS A Grubu Hazırlık

KPSS VCD Eğitim Setleri

KPSS Genel Kültür Genel Yetenek Eğitim Seti KPSS Eğitim Bilimleri Eğitim Seti KPSS Genel Kültür Kitapları - Genel Yetenek Kitapları- Eğitim Bilimleri Kitapları KPSS Eğitim Marketi


KPSS Matematik Konu Başlıkları KPSS Matematik Konu Özetleri  KPSS Matematik KPSS Matematik Ortalama Çeşitleri

Ortalama Çeşitleri

Aritmetik ortalama ve açıklık

Aritmetik ortalama ve açıklık hesapları için elimizde birden fazla sayı olmalı.
Aritmetik ortalamayı siz öğrencilerimiz en çok ders notlarınızı hesaplarken kullanıyorsunuz.
Örneğin; Matematik dersinden kaç tane sınav olduysanız hepsini topluyorsunuz ve en son sınav sayısına bölüyorsunuz.
Veri: Elimizde kaç tane sayısal değer varsa bunların her birine veri denir.

Artirmetik ortalama = Tüm verilerin toplamı / veri sayısı

Açıklık ise elimizdeki verilerin ( sayıların ) içindekilerden en büyüğü ile en küçüğünün farkını alarak bulunur.

Açıklık= en büyük sayı - en küçük sayı

Örnek: Bir futbol takımında oynayan 11 oyuncunun yaşları aşağıdaki gibidir.

27,19,23,32,34,27,28,26,25,20,21

Buna göre bu oyuncuların yaşlarının aritmetik ortalamasını ve bu verilerin açıklığını bulunuz.

Toplam:282

Veri sayısı:11

Aritmetik ortalaması= toplam / veri sayısı

Aritmetik Ortalama = 282 / 11

Aritmetik Ortalama=25,6 olarak bulunur.

Açıklık= enbüyük sayı - en küçük sayı

En büyük sayı=34

En küçük sayı=19

Açıklık = 34-19=15

Açıklık= 15 olarak bulunur.

Geometrik Ortalama

Geometrik ortalama, birim değerlerinin (gözlem sonuçlarının) birbirleriyle çarpımlarının, n birim sayısı olmak üzere, n inci dereceden köküne denir.

Birim değerleri x1, x2, ... , xn gibi gösterilirse geometrik ortalama aşağıdaki gibi yazılır:

Geometrik Ortalama Formülü

İstatistiksel araştırmalarda gözlem sonuçları arasındaki oransal (nispî) farkların mutlak farklardan daha önemli olduğu durumlarda geometrik ortalamaya başvurulur. Diğer bir ifade ile gözlem sonuçlarının her biri bir önceki gözlem sonucuna bağlı olarak değişiyorsa ve bu değişmenin hızı saptanmak istenirse geometrik ortalama sağlıklı sonuçlar verir. Geometrik ortalama kısaca G harfi ile gösterilir.

Geometrik ortalama bulmak veri değerlerinin pozitif olmasi gerekir. Eğer tek bir veri değeri sıfır ise geometrik ortalama anlamsız olur.

Harmonik Ortalama

Harmonik ortalama, gözlem sonuçlarının (birim değerlerinin) terslerinin aritmetik ortalamasının tersidir.

Birim değerleri x1, x2, ... , xn gibi gösterilirse harmonik ortalama aşağıdaki gibi yazılır:

Harmonik Ortalama


Harmonik ortalama genellikle, ekonomik olaylarda 1 birim ile alınan ortalama miktara veya bir mamülün bir biriminin üretimi için harcanan ortalamaya gereksinim duyulduğunda kullanılır. Harmonik ortalama kısaca H harfi ile gösterilir.

İki veri için harmonik ortalama [değiştir]Yalnız iki tane veri, (x1 ve x2 elde bulunursa, bunlar için harmonik ortalama H şöyle ifade edilebilir.


Bu halde bulunan harmonik ortalama, bu iki sayının aritmetik ortalamasına şöyle ilişkilidir;


ve bu iki verinin geometrik ortalamasi olan G ise


Bu harmonik ortalamaya şöyle ilişkilidir:


Böylece


olur. Bu demektir ki geometrik ortalama, aritmetik ortalama ve harmonik ortalama'nın geometrik ortalaması olur.

Ama çok dikkat edilmelidir ki bu sonuç yalnız ve yalnız iki veri için geçerli olur.